

Daily Tutorial Sheet-7 Level-2

86.(D) All the given statements are true.

87.(D) YBa₂
$$\overset{*}{\text{Cu}}_{\text{n}} \text{ O}_7 \implies 3 + 2(2) + n(1) - 7(2) = 0 \implies n = 7$$

- **88. (D)** Here, statement-1 is false, because stannous chloride is a strong reducing agent not strong oxidising agent. Stannous chlorides gives Grey precipitate with mercuric chloride. Hence, statement-2 is true.
- **89. (A)** Both assertion and reason are true and reason is the correct explanation of assertion.

 Maximum oxidation state of S is +6, it cannot exceed it. Therefore it can't be further oxidized.

90.(BCD) Ba₂XeO₆
$$4+x-12=0$$
 \Rightarrow $x=8$
XeO₃ $x-6=0$ \Rightarrow $x=6$
CrO₅ (peroxy linkage) $x-4-2=0$ \Rightarrow $x=6$

91.(B)
$$S_2^{+2} O_3^{2-} \longrightarrow SO_4^{2-} \implies E = \frac{M}{8}$$

92.(C)
$$\overset{+1}{\text{ClO}^-} \longrightarrow \overset{+1}{\text{ClO}^-} \overset{+5}{\longrightarrow} \overset{+5}{\text{ClO}_3}$$
 oxidation Equivalent mass of $\overset{-1}{\text{ClO}^-}$ is $\frac{3M}{4}$.

93.(C)
$$As_2O_3 + MnO_4^- \longrightarrow 2AsO_4^{3-} + Mn^{2+}$$
 n -factor = 4

Let, molarity of $KMnO_4$ solution be M

 \therefore Equivalents of As₂O₃ = Eq. of KMnO₄ solution

$$\frac{0.1097}{198} \times 4 = \frac{26.10 \times M \times 5}{1000} \text{ (Equivalent weight } As_2O_3 = \frac{198}{4} \text{)}$$

Molarity = $0.017M \approx 0.018$

94.(C)
$$40 \times 0.246 \times 8 = V \times 0.154 \times 3$$
 (Meq. of $S_2O_3^{2-}$ = Meq. of CrO_4^{2-})
 \therefore $V = 170.4 \, mL$